Hurry, item low in stock!

Unit equations in diophantine number theory - J. H Evertse

Hurry only 1 in stock!
FREE Delivery on ALL Orders!
Unit equations in diophantine number theory
J. H Evertse
Cambridge University Press
UK Publication Date

Diophantine number theory is an active area that has seen tremendous growth over the past century, and in this theory unit equations play a central role. This comprehensive treatment is the first volume devoted to these equations. The authors gather together all the most important results and look at many different aspects, including effective results on unit equations over number fields, estimates on the number of solutions, analogues for function fields and effective results for unit equations over finitely generated domains. They also present a variety of applications. Introductory chapters provide the necessary background in algebraic number theory and function field theory, as well as an account of the required tools from Diophantine approximation and transcendence theory. This makes the book suitable for young researchers as well as experts who are looking for an up-to-date overview of the field.

We are Rated Excellent on Trustpilot
Here's what you say about us...

Jan-Hendrik Evertse is Assistant Professor in the Mathematical Institute at Leiden University. His research concentrates on Diophantine approximation and applications to Diophantine problems. In this area he has obtained some influential results, in particular on estimates for the numbers of solutions of Diophantine equations and inequalities. He has written more than 75 research papers and co-authored one book with Bas Edixhoven entitled Diophantine Approximation and Abelian Varieties (2003).

'The book is well written and is certain to be of use to experts and graduate students alike. Every chapter is prefaced with a nice introduction and summary, putting the material in perspective and surveying the proof techniques. The book also features an extensive bibliography and an easy-to-use glossary and index.' Lenny Fukshansky, MathSciNet

'Understanding the book requires only basic knowledge in algebra (groups, commutative rings, fields, Galois theory and elementary algebraic number theory). In particular the concepts of height, places and valuations play an important role. … In addition to providing a survey, the authors improve both formulations and proofs of various important existing results in the literature, making their book a valuable asset for researchers in this area. … I thank them for their fast and clear answers.' Pieter Moree, Nieuw Archief voor Wiskunde

Keyword Index
Number theory.
Country of Publication
Number of Pages
xv, 363

FREE Delivery on all Orders!